
B A S I C S

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Print

Prints a string into the console. print("Hello World")

Input

Prints a string into the console,
and asks the user for a string input.

input("What's your name")

Comments

Adding a # symbol in font of text
lets you make comments on a line of code.
The computer will ignore your comments.

#This is a comment
print("This is code")

Variables

A variable give a name to a piece of data.
Like a box with a label, it tells you what's
inside the box.

my_name = "Angela"
my_age = 12

The += Operator

This is a convient way of saying: "take the
previous value and add to it.

my_age = 12
my_age += 4
#my_age is now 16

D A T A T Y P E S

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Integers

Integers are whole numbers. my_number = 354

Floating Point Numbers

Floats are numbers with decimal places.
When you do a calculation that results in
a fraction e.g. 4 ÷ 3 the result will always be
a floating point number.

my_float = 3.14159

Strings

A string is just a string of characters.
It should be surrounded by double quotes.

my_string = "Hello"

String Concatenation

You can add strings to string to create
a new string. This is called concatenation.
It results in a new string.

"Hello" + "Angela"
#becomes "HelloAngela"

Escaping a String

Because the double quote is special, it
denotes a string, if you want to use it in
a string, you need to escape it with a "\"

speech = "She said: \"Hi\""
print(speech)
#prints: She said: "Hi"

www.appbrewery . com

Converting Data Types

You can convert a variable from 1 data
type to another.
Converting to float:
float()

Converting to int:
int()

Converting to string:
str()

n = 354
new_n = float(n)
print(new_n) #result 354.0

Checking Data Types

You can use the type() function
to check what is the data type of a
particular variable.

n = 3.14159
type(n) #result float

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

F-Strings

You can insert a variable into a string
using f-strings.
The syntax is simple, just insert the variable
in-between a set of curly braces {}.

days = 365
print(f"There are {days}
in a year")

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

The += Operator

This is a convenient way to modify a variable.
It takes the existing value in a variable
and adds to it.
You can also use any of the other
mathematical operators e.g. -= or *=

my_number = 4
my_number += 2
#result is 6

The Modulo Operator

Often you'll want to know what is the
remainder after a division.
e.g. 4 ÷ 2 = 2 with no remainder
but 5 ÷ 2 = 2 with 1 remainder
The modulo does not give you the result
of the division, just the remainder.
It can be really helpful in certain situations,
e.g. figuring out if a number is odd or even.

5 % 2
#result is 1

M A T H S

Arithmetic Operators
You can do mathematical calculations with
Python as long as you know the right
operators.

3+2 #Add
4-1 #Subtract
2*3 #Multiply
5/2 #Divide
5**2 #Exponent

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Name Error

This happens when there is a variable
with a name that the computer
does not recognise. It's usually because
you've misspelt the name of a variable
you created earlier.
Note: variable names are case sensitive!

my_number = 4
my_Number + 2
Traceback (most recent call
last): File "<stdin>", line 1,
NameError: name 'my_Number'
is not defined

Zero Division Error

This happens when you try to divide by zero,
This is something that is mathematically
impossible so Python will also complain.

5 % 0
Traceback (most recent call
last): File "<stdin>", line 1,
ZeroDivisionError: integer
division or modulo by zero

E R R O R S

Syntax Error
Syntax errors happen when your code
does not make any sense to the computer.
This can happen because you've misspelt
something or there's too many brackets or
a missing comma.

print(12 + 4))
 File "<stdin>", line 1
 print(12 + 4))
 ^
SyntaxError: unmatched ')'

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Functions with Inputs

In addition to simple functions, you can
give the function an input, this way, each time
the function can do something different
depending on the input. It makes your
function more useful and re-usable.

def add(n1, n2):
print(n1 + n2)

add(2, 3)

F U N C T I O N S

Creating Functions

This is the basic syntax for a function in
Python. It allows you to give a set of
instructions a name, so you can trigger it
multiple times without having to re-write
or copy-paste it. The contents of the function
must be indented to signal that it's inside.

def my_function():
print("Hello")
name = input("Your name:")
print("Hello")

Calling Functions

You activate the function by calling it.
This is simply done by writing the name of
the function followed by a set of round
 brackets. This allows you to determine
when to trigger the function and how
many times.

my_function()
my_function()
#The function my_function
#will run twice.

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Variable Scope

Variables created inside a function are
destroyed once the function has executed.
The location (line of code) that you use
a variable will determine its value.
Here n is 2 but inside my_function() n is 3.
So printing n inside and outside the function
will determine its value.

n = 2
def my_function():

n = 3
print(n)

print(n) #Prints 2
my_function() #Prints 3

Functions with Outputs

In addition to inputs, a function can also have
an output. The output value is proceeded by
the keyword "return".
This allows you to store the result from a
function.

def add(n1, n2):
return n1 + n2

result = add(2, 3)

Keyword Arguments

When calling a function, you can provide
a keyword argument or simply just the
value.
Using a keyword argument means that
you don't have to follow any order
when providing the inputs.

def divide(n1, n2):
result = n1 / n2

#Option 1:
divide(10, 5)
#Option 2:
divide(n2=5, n1=10)

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Elif

In addition to the initial If statement
condition, you can add extra conditions to
test if the first condition is false.
Once an elif condition is true, the rest of
the elif conditions are no longer checked
and are skipped.

weather = "sunny"
if weather == "rain":

print("bring umbrella")
elif weather == "sunny":

print("bring sunglasses")
elif weather == "snow":

print("bring gloves")

C ON D I T I O N A L S

If

This is the basic syntax to test if a condition
is true. If so, the indented code will be
executed, if not it will be skipped.

n = 5
if n > 2:

print("Larger than 2")

Else

This is a way to specify some code that will be
executed if a condition is false.

age = 18
if age > 16:

print("Can drive")
else:

print("Don't drive")

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

not

This will flip the original result of the
condition. e.g. if it was true then it's now
false.

if not 3 > 1:
print("something")
#Will not be printed.

and

This expects both conditions either side
of the and to be true.

s = 58
if s < 60 and s > 50:

print("Your grade is C")

or

This expects either of the conditions either
side of the or to be true. Basically, both
conditions cannot be false.

age = 12
if age < 16 or age > 200:

print("Can't drive")

comparison operators

These mathematical comparison operators
allow you to refine your conditional checks.

> Greater than
< Lesser than
>= Greater than or equal to
<= Lesser than or equal to
== Is equal to
!= Is not equal to

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

_ in a For Loop

If the value your for loop is iterating through,
e.g. the number in the range, or the item in
the list is not needed, you can replace it with
an underscore.

for _ in range(100):
#Do something 100 times.

L O O P S

While Loop

This is a loop that will keep repeating itself
until the while condition becomes false.

n = 1
while n < 100:

n += 1

For Loop

For loops give you more control than
while loops. You can loop through anything
that is iterable. e.g. a range, a list, a dictionary
or tuple.

all_fruits = ["apple",
"banana", "orange"]

for fruit in all_fruits:
print(fruit)

break

This keyword allows you to break free of the
loop. You can use it in a for or while loop.

scores = [34, 67, 99, 105]
for s in scores:

if s > 100:
print("Invalid")
break

print(s)

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

continue

This keyword allows you to skip this iteration
of the loop and go to the next. The loop will
still continue, but it will start from the top.

n = 0
while n < 100:

n += 1
if n % 2 == 0:

continue
print(n)

#Prints all the odd numbers

Infinite Loops

Sometimes, the condition you are checking
to see if the loop should continue never
becomes false. In this case, the loop will
continue for eternity (or until your computer
stops it). This is more common with while
loops.

while 5 > 1:
print("I'm a survivor")

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

List Index

To get hold of a particular item from a
list you can use its index number.
This number can also be negative, if you
want to start counting from the end of the
list.

letters = ["a", "b", "c"]
letters[0]
#Result:"a"
letters[-1]
#Result: "c"

L I S T M E T H O D S

Adding Lists Together

You can extend a list with another list by
using the extend keyword, or the + symbol.

list1 = [1, 2, 3]
list2 = [9, 8, 7]
new_list = list1 + list2
list1 += list2

Adding an Item to a List

If you just want to add a single item to a
list, you need to use the .append() method.

all_fruits = ["apple",
"banana", "orange"]

all_fruits.append("pear")

List Slicing

Using the list index and the colon symbol
you can slice up a list to get only the
portion you want.
Start is included, but end is not.

#list[start:end]
letters = ["a","b","c","d"]
letters[1:3]
#Result: ["b", "c"]

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

Round
This does a mathematical round.
So 3.1 becomes 3, 4.5 becomes 5
and 5.8 becomes 6.

round(4.6)
result 5

B U I L T I N F U N C T I O N S

Randomisation

The random functions come from the
random module which needs to be
imported.
In this case, the start and end are both
included
start <= randint <= end

import random
randint(start, end)
n = random.randint(2, 5)
#n can be 2, 3, 4 or 5.

Range

Often you will want to generate a range
of numbers. You can specify the start, end
and step.
Start is included, but end is excluded:
start <= range < end

range(start, end, step)
for i in range(6, 0, -2):

print(i)

result: 6, 4, 2
0 is not included.

abs
This returns the absolute value.
Basically removing any -ve signs. abs(-4.6)

result 4.6

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

M O D U L E S

Aliasing

You can use the as keyword to give
your module a different name.

import random as r
n = r.randint(1, 5)

Importing

Some modules are pre-installed with python
e.g. random/datetime
Other modules need to be installed from
pypi.org

import random
n = random.randint(3, 10)

Importing Everything

You can use the wildcard (*) to import
everything from a module. Beware, this
usually reduces code readability.

from random import *
list = [1, 2, 3]
choice(list)
More readable/understood
#random.choice(list)

Importing from modules

You can import a specific thing from a
module. e.g. a function/class/constant
You do this with the from keyword.
It can save you from having to type the same
thing many times.

from random import randint
n = randint(1, 5)

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

C L A S S E S & O B J E C T S

Creating an Object from a Class

You can create a new instance of an object
by using the class name + ()

class Car:
pass

my_toyota = Car()

Creating a Python Class

You create a class using the class keyword.
Note, class names in Python are PascalCased.
So to create an empty class �

class MyClass:
#define class

Class Methods

You can create a function that belongs
to a class, this is known as a method.

class Car:
def drive(self):

print("move")
my_honda = Car()
my_honda.drive()

Class Variables

You can create a varaiable in a class.
The value of the variable will be available
to all objects created from the class.

class Car:
colour = "black"

car1 = Car()
print(car1.colour) #black

P Y T H O N C H E A T S H E E T
1 0 0 D A Y S O F C O D E

C O M P L E T E P R O F E S S I O N A L
P Y T H O N B O O T C A M P

www.appbrewery . com

The __init__ method

The init method is called every time a new
object is created from the class.

class Car:
def __init__(self):

print("Building car")
my_toyota = Car()
#You will see "building car"
#printed.

Class Inheritance

When you create a new class, you can
inherit the methods and properties
of another class.

class Animal:
def breathe(self):

print("breathing")
class Fish(Animal):

def breathe(self):
super().breathe()
print("underwater")

nemo = Fish()
nemo.breathe()
#Result:
#breathing
#underwater

Class Properties

You can create a variable in the init() of
a class so that all objects created from the
class has access to that variable.

class Car:
def __init__(self, name):

self.name = "Jimmy"

