
Module 18
Hacking Mobile 
Platform

Ansh Bhawnani



Mobile Attack 
Vectors

Module 18



1. Mobile Threat 
Report

Module 18



Mobile Attack Vectors

4

▰ The mobile app Fortnite with its 200 million players and 60 million downloads is a 
fertile ground for fake apps disguised as versions of the game.

▰ In 2018, TimpDoor, while not new, became the leading mobile backdoor family by 
more than double and a solid example of how tried and true phishing over SMS is 
still popular among cyber criminals to deceive users into installing malware.

▰ Banking trojans on mobile devices has continued to rise, particularly homed in on 
account holders of both large and regional banks.

▰ Cyber criminals are looking to find ways to add value to their digital wallets without
the cost of doing their own mining. 

▰ Spyware attacks spike on mobile are an attractive target for nation-state threat 
actors to gain intelligence and track victims.



2. Terminology

Module 18



Mobile Attack Vectors

6

▰ Stock ROM: It is the default ROM (operating system) of an android device supplied 
by the manufacturer©

▰ CyanogenMod: It is a modified device ROM without the restrictions imposed by 
device's original ROM©

▰ Bricking the Mobile Device: Altering the device OSes using rooting or jailbreaking in 
a way that causes the mobile device to become unusable or inoperable©

▰ Bring Your Own Device (BYOD): Bring your own device (BYOD) is a business policy 
that allows employees to bring their personal mobile devices to their workplace.



Mobile Attack Vectors

7

▰ Metasploit is one of the most powerful tools used for penetration testing. Most of 
its resources can be found at − www.metasploit.com. 

▰ It comes in two versions: commercial and free edition.

▰ The hardware requirements to install Metasploit are −

▻ 2 GHz + processor

▻ 1 GB RAM available

▻ 1 GB + available disk space



Mobile Attack Vectors

8

▰ The recommended Software OS versions for Metasploit are −

▻ Kali Linux 2.0 or Upper Versions

▻ Red Hat Enterprise Linux Server 7.1+

▻ Ubuntu Linux 14.04 LTS

▻ Windows Server 2012 R2

▻ Windows 10



Mobile Attack Vectors

9



Mobile Attack Vectors

10

▰ Armitage is a complement tool for Metasploit. It visualizes targets, recommends
exploits, and exposes the advanced post-exploitation features. Armitage is 
incorporated with Kali distribution. 

▰ Armitage is very user friendly. Its GUI has three distinct areas: 

▻ The area Targets lists all the machines that you have discovered and those 
you are working with. The hacked targets have red color with a thunderstorm
on it.

▻ The area Console provides a view for the folders. Just by clicking on it, you 
can directly navigate to the folders without using any Metasploit commands.

▻ The area Modules is the section that lists the module of vulnerabilities.



Mobile Attack Vectors

11

▰ Exploit: After vulnerability scanning and vulnerability validation, we have to run and 
test some scripts, in order to gain access to a machine and do what we are 
planning to do.

▻ Active Exploits: They will exploit a specific host, run until completion, and then 
exit.

▻ Brute-force modules will exit when a shell opens from the victim.

▻ Module execution stops if an error is encountered.

▻ You can force an active module to the background by passing ‘-j’ to the 
exploit command.



Mobile Attack Vectors

12

▻ Passive Exploits: Passive exploits wait for incoming hosts and exploit them as 
they connect.

▻ Passive exploits almost always focus on clients such as web browsers, 
FTP clients, etc.

▻ They can also be used in conjunction with email exploits, waiting for 
connections.

▻ Passive exploits report shells as they happen can be enumerated by 
passing ‘-l’ to the sessions command. Passing ‘-i’ will interact with a 
shell.



Mobile Attack Vectors

13

▰ Payload, in simple terms, are simple scripts that the hackers utilize to interact with 
a hacked system. Using payloads, they can transfer data to a victim system. 
Metasploit payloads can be of three types −

▻ Singles − Singles are very small and designed to create some kind of 
communication, then move to the next stage. For example, just creating a 
user.

▻ Staged − It is a payload that an attacker can use to upload a bigger file onto a 
victim system.

▻ Stages − Stages are payload components that are downloaded by Stagers
modules. The various payload stages provide advanced features with no size 
limits such as Meterpreter and VNC Injection.



Mobile Attack Vectors

14

▰ Metasploit currently has over 547 payloads. Some of them are: 

▻ Command shell enables users to run collection scripts or run arbitrary
commands against the host.

▻ Meterpreter enables users to control the screen of a device using VNC and to 
browse, upload and download files.

▻ Dynamic payloads enables users to evade anti-virus defense by generating 
unique payloads.

▻ Static payloads enables static IP address/port forwarding for communication 
between the host and the client system.



Mobile Attack Vectors

15

▰ Pivoting is a technique that Metasploit uses to route the traffic from a hacked
computer toward other networks that are not accessible by a hacker machine.

▰ A network with the range 192.168.1.0/24 where the hacker machine has access, 
and

▰ Another network with the range 10.10.10.0/24. It is an internal network and the 
hacker doesn’t have access to it.

▰ The hacker will try to hack the second network this machine that has access in 
both networks to exploit and hack other internal machines.

▰ Hacker will first break into the first network and then use it as a staging point to 
exploit and hack the internal machines of the second network. This process is 
known as pivoting.



Mobile Attack Vectors

16



Mobile Attack Vectors

17

▰ Backdoor: After going through all the hard work of exploiting a system, it’s often a 
good idea to leave yourself an easier way back into it for later use. This way, if the 
service you initially exploited is down or patched, you can still gain access to the 
system. 



3. Mobile Platform 
Vulnerabilities and 
Risks

Module 18



Mobile Attack Vectors

19

▰ Weak Server Side Controls

▰ Lack of Binary Protections

▰ Insecure Data Storage

▰ Insufficient Transport Layer Protection

▰ Unintended Data Leakage

▰ Poor Authorization and Authentication

▰ Broken Cryptography

▰ Client Side Injection

▰ Security Decisions via Untrusted Inputs

▰ Improper Session Handling



Hacking Android OS

Module 18



Introduction

Module 18



Mobile Attack Vectors

22

▰ Android is an open source and Linux-based Operating System for mobile devices 
such as smartphones and tablet computers. Android was developed by the Open 
Handset Alliance, led by Google, and other companies.

▰ The first beta version of the Android Software Development Kit (SDK) was released 
by Google in 2007 where as the first commercial version, Android 1.0, was released 
in September 2008.

▰ The source code for Android is available under free and open source software 
licenses. Google publishes most of the code under the Apache License version 2.0 
and the rest, Linux kernel changes, under the GNU General Public License version 2.

▰ Android applications are usually developed in the Java language using the Android 
Software Development Kit.



Mobile Attack Vectors

23



1. Android OS 
Architecture

Module 18



Hacking Android OS

25



Hacking Android OS

26



Hacking Android OS

27



Hacking Android OS

28

▰ Linux kernel

▻ At the bottom of the layers is Linux - Linux 3.6 with approximately 115
patches. This provides a level of abstraction between the device hardware and 
it contains all the essential hardware drivers like camera, keypad, display etc. 

▻ Also, the kernel handles all the things that Linux is really good at such as 
networking and a vast array of device drivers, which take the pain out of 
interfacing to peripheral hardware.



Hacking Android OS

29

▰ Libraries

▻ On top of Linux kernel there is a set of libraries including open-source Web
browser engine WebKit, well known library libc, SQLite database which is a 
useful repository for storage and sharing of application data, libraries to play 
and record audio and video, SSL libraries responsible for Internet security etc.



Hacking Android OS

30

▰ Android Libraries

▻ This category encompasses those Java-based libraries that are specific to 
Android development. Examples of libraries in this category include:

▻ android.app

▻ android.content

▻ android.opengl

▻ android.os

▻ android.widget

▻ android.webkit



Hacking Android OS

31

▰ Android Runtime

▻ This is the third section of the architecture and available on the second layer 
from the bottom. This section provides a key component called Dalvik Virtual 
Machine which is a kind of Java Virtual Machine specially designed and 
optimized for Android.

▻ The Dalvik VM makes use of Linux core features like memory management
and multi-threading, which is intrinsic in the Java language. The Dalvik VM 
enables every Android application to run in its own process, with its own
instance of the Dalvik virtual machine.



Hacking Android OS

32

▰ Application Framework

▻ The Application Framework layer provides many higher-level services to 
applications in the form of Java classes. Application developers are allowed 
to make use of these services in their applications. The Android framework 
includes the following key services −

▻ Activity Manager

▻ Content Providers

▻ Resource Manager

▻ Notifications Manager

▻ View System



Hacking Android OS

33

▰ Applications

▻ You will find all the Android application at the top layer. You will write your 
application to be installed on this layer only. Examples of such applications 
are Contacts Books, Browser, Games etc.



2. Android Rooting

Module 18



Hacking Android OS

35

▰ Rooting is about obtaining root access to the underlying Linux system beneath 
Android and thus gaining absolute control over the software that is running on the 
device.

▰ Things that require root access on a typical Linux system —

▻ mounting and unmounting file systems, 

▻ starting your favorite SSH or HTTP or DHCP or DNS or proxy servers, 

▻ killing system processes, chroot-ing, 

▻ Being able to run arbitrary commands as the root allows you to do absolutely 
anything on a Linux / Android system



Hacking Android OS

36

▰ Stock OEM Android builds typically do not allow users to execute arbitrary code as 
root. 

▰ The bootloader, the first piece of code executed when your device is powered on, is 
responsible for loading the Android OS and the recovery system and flashing a new
ROM.

▰ Many Android devices have locked bootloaders that you would have to hack around 
in order to make them do anything other than boot the stock ROM.

▰ System recovery is the second piece of low-level code on board any Android device. 
It is separate from the Android userland and is typically located on its own partition; 
it is usually booted by the bootloader when you press a certain combination of 
hardware keys.



Hacking Android OS

37

▰ However, since recovery is stored in a partition just like /system, /data and /cache, 
you can replace it with a custom recovery if you have root access in Linux / 
Android. 

▰ ADB allows a PC or a Mac to connect to an Android device and perform certain 
operations. One such operation is to launch a simple shell on the device, using the 
command adb shell. 

▰ If ro.secure=0, an ADB shell will run commands as the root user on the device. But 
if ro.secure=1, an ADB shell will run commands as an unprivileged user on the 
device.

▰ The value of this property is set at boot time from the default.prop file in the root
directory.



Hacking Android OS

38

▰ The contents of the root directory are essentially copied from a partition in the 
internal storage on boot, but you cannot write to the partition if you are not already 
root. So the only way you could change it is by gaining root access in the first 
place.

▰ On an Android system, all Android applications that you can see or interact with 
directly are running as _un_privileged users in sandboxes.

▰ On Linux, privilege escalation is usually accomplished via the su and sudo
programs; they are often the only programs in the system that are able to execute 
the system call setuid(0) that changes the current program from running as an 
unprivileged user to running as root.



Hacking Android OS

39

▰ Unsurprisingly, stock OEM ROMs never come with these su. You cannot just 
download it or copy it over either; it needs to have its SUID bit set, which indicates 
to the system that the programs this allowed to escalate its runtime privileges to 
root.

▰ To summarize, what this means is that any program that you can interact with on 
Android (and hence running in unprivileged mode) is unable to either 1) gain
privileged access and execute in privileged mode, or 2) start another program that 
executes in privileged mode.



Hacking Android OS

40

▰ Typing ps on an Android shell (either via ADB or a terminal emulator on the device) 
will give you programs started by the init process, the first process started by the 
kernel (the kernel spawns init in a particular fashion, and init then goes on and 
spawns all other processes) which has to run as root because it needs to start 
other privileged system processes.

▰ If you can hack / trick one of these system processes running in privileged mode to 
execute your arbitrary code, you have just gained privileged access to the system.

▰ This how all one-click-root methods work, including z4root, gingerbreak, and so on.

▰ “Arbitrary code” is most certainly a piece of code that mounts /system in read-
write mode and installs a copy of su permanently on the system



Hacking Android OS

41



Hacking Android OS

42



Hacking Android OS

43

▰ Advantages:

▻ Support for themes, allowing everything to be visually changed even while the 
device is booting, 

▻ Full control of the kernel, which, for example, allows overclocking and 
underclocking the CPU and GPU.

▻ Full application control, including the ability to backup, restore, or batch edit 
applications, or to remove bloatware

▻ Custom automated system-level processes 

▻ Ability to install a custom firmware or ROM or software (such as Xposed, 
BusyBox, etc.)



Hacking Android OS

44

▰ Disadvantages:

▻ Voids the phone warranty

▻ Risk of "bricking" a phone.

▻ Breaks the phone contract.

▻ Poor performance.

▻ Viruses.



Android Penetration 
Testing

Module 18



Android Security 
Architecture

Module 18



Android Penetration Testing

47

▰ Android provides these key security features: 

▻ Robust security at the OS level through the Linux kernel

▻ Mandatory app sandbox for all apps

▻ Secure interprocess communication

▻ App signing

▻ App-defined and user-granted permissions



Android Penetration Testing

48



Android Penetration Testing

49

Permission control

Privilege control

Process control



Android Penetration Testing

50

▰ Every application is given a separate user ID and process ID

▰ User of that application is the owner of that PID



Android Penetration Testing

51

▰ A very important and compulsory file present in every Android App is 
“AndroidManifest.xml”.

▻ It primarily describes the application’s activities, services and broadcast receivers.

▻ Some declarations in it let the Android OS know what components the app has and 
when there is a need to launch them.

▻ It declares which permissions the application needs for accessing the protected parts.

▻ It also declares the permissions that other apps require to have in order to interact with 
the application’s components.



Android Penetration Testing

52



Android Penetration Testing

53

▰ App Signing: The developer is identified by this signature and the private key is also 
held by him only. The purpose of this certificate is to distinguish the authors and 
allow the system to grant or deny signature-level permissions.



Android Application 
Components

Module 18



Android Penetration Testing

55

▰ Basic Components

▻ Activity

▻ Intent

▻ Service

▻ Content Provider

▰ Additional Components

▻ Fragments

▻ Views

▻ Layouts

▻ Resources



Setting up your Lab

Module 18



1. Attacking 
Machine

Module 18



Android Penetration Testing

58

▰ Santoku OS

▻ Santoku is dedicated to mobile forensics, analysis, and security, and packaged 
in an easy to use, Open Source platform.



2. Client Machine 
(Android Device)

Module 18



Android Penetration Testing

60

▰ Genymotion Android Emulator

▻ If you don't have an Android device, probably you need an emulator. I prefer 
using Genymotion For Fun but you can use other applications as well.



3. Testing 
Application

Module 18



Android Penetration Testing

62

▰ DIVA

▻ There are lots of APK files for penetration testing in Android OS but mostly we 
will use DIVA application.



4. Communication 
Toolkit

Module 18



Android Penetration Testing

64

▰ ADB

▻ Android Debug Bridge (adb) is a versatile command-line tool that lets you 
communicate with a device. 

▻ The adb command facilitates a variety of device actions, such as installing
and debugging apps, and it provides access to a Unix shell that you can use to 
run a variety of commands on a device. 

▻ It is a client-server program that includes three components: 



Android Penetration Testing

65

▰ A client, which sends commands. The client runs on your development machine. 
You can invoke a client from a command-line terminal by issuing an adb command.

▰ A daemon (adbd), which runs commands on a device. The daemon runs as a 
background process on each device.

▰ A server, which manages communication between the client and the daemon. The 
server runs as a background process on your development machine.



Android Penetration Testing

66

▰ How adb works

▻ When you start an adb client, the client first checks whether there is an adb
server process already running. If there isn't, it starts the server process. 
When the server starts, it binds to local TCP port 5037 and listens for 
commands sent from adb clients—all adb clients use port 5037 to 
communicate with the adb server. 

▻ The server then sets up connections to all running devices. It locates
emulators by scanning odd-numbered ports in the range 5555 to 5585, the 
range used by the first 16 emulators. Where the server finds an adb daemon 
(adbd), it sets up a connection to that port.



Android Penetration Testing

67

USB/TCP



5. Reverse 
Engineering tools

Module 18



Android Penetration Testing

69

▰ Apktool

▻ A tool for reverse engineering 3rd party, closed, binary Android apps. It can 
decode resources to nearly original form and rebuild them after making some 
modifications. 

▻ It also makes working with an app easier because of the project like file 
structure and automation of some repetitive tasks like building apk, etc.

▻ Decompiles to Smali, can’t get Java source code from apk.



Android Penetration Testing

70

▰ JaDX

▻ It is a tool that produces Java source code from Android DEX and APK files.

▻ Allows you to see the app structure after decompiling.

▻ It's licensed under Apache 2.0.

▻ If the app uses some non-ASCII characters the decompilation will fail.



6. Mobile OWASP 
Top 10

Module 18



Android Penetration Testing

72



Android Penetration Testing

73

▰ Insecure Logging

▻ Logging is a method that developers use for tracing the code and watching 
warnings or errors.

▻ These logs are stored in a central repository for all the apps to have access
to.

▻ Logging any sensitive data can cause this issue.



Android Penetration Testing

74

▰ Hardcoding issues

▻ Developers may leave plaintext strings in the app source code containing raw 
data such as API keys, access tokens, passwords, etc.

▻ We can recover this sensitive data by simple reverse engineering the source 
code.



Android Penetration Testing

75

▰ Insecure Data Storage 

▻ Developers store sensitive info in plaintext on local storage without
encryption.

▻ Ways to store data locally:

▻ Shared preferences

▻ Databases

▻ Temp files

▻ External Storage



Android Penetration Testing

76

▰ Input Validation Issues (SQL Injection)

▻ It occurs when there is improper or no input sanitization by the application 
against SQL queries.

▻ Attacker can run SQLi commands to manipulate SQLite databases.



Android Penetration Testing

77

▰ Abusing WebView

▻ Android WebView is used to display web page in android

▻ In the android, every message between applications is as a URL.

▻ Attacker can supply URLs with file:// protocol to access any file on the 
android device.



Android Penetration Testing

78

▰ Access Control Issues

▻ Developers often fail to check access control in every activity.

▻ Android ActivityManager allows us to open any activity with an Intent Filter.

▻ We can bypass authorization by directly opening the privileged activity.



Android Penetration Testing

79

▰ Leaking Content Provider

▻ A content provider is required if you need to share data between multiple
applications.

▻ A special form of URI which starts with “content://” is assigned to each 
content provider

▻ Any app which knows this URI can insert, update, delete, and query data from 
the database of the provider app.

▻ If proper security controls are not enforced in the app, that leads to leakage of 
information.



Android Penetration Testing

80

▰ Leaking Content Provider



Hacking iOS

Module 18



1. Jailbreaking iOS

Module 18



Hacking iOS

83

▰ Jailbreak actually means to allow third-party applications to be installed into your 
iDevice. Contrary to popular beliefs, it's actually fully legal to run third-party 
applications on your device since James H. Billington's DMCA revision. Having this 
in mind the only thing that prevents us from having an easy jailbreak is Apple.

▰ Jailbreak itself is getting control over the root and media partition of your iDevice; 
where all the iOS's files are stored at. To do so /private/etc/fstab must be patched.

▰ fstab is the switch room of your iDevice, controlling the permission of the root and 
media partition. The default is 'read-only', allowing eyes and no hands. To be able to 
modify the root and media partition we must set the fstab to 'read-write', allowing 
eyes and hands



Hacking iOS

84

▰ The main problem is not getting the files in, but getting them through various 
checkpoints. These checkpoints were put by Apple to verify if the file is indeed legit, 
or a third-party. Every file is signed by a key, and without it, the file will be put aside 
and be unusable.



Hacking iOS

85

▰ When an iDevice boots up it goes trough a "chain of trust". This chain is a series of 
signature checks that makes sure everything being ran is Apple approved. It goes 
on the following (specific) order:

▻ Runs Bootrom: Also called "SecureROM" by Apple, it is the first significant 
code that runs on an iDevice.

▻ Runs Bootloader: Generally, it is responsible for loading the main firmware.

▻ Loads Kernel: Bridge between the iOS and the actual data processing done at 
the hardware level.

▻ Loads iOS: The final step to the chain, iOS starts and we get our nice "Slide to 
Unlock" view.



Hacking iOS

86

▰ What is the roadblock in a jailbreak?

▻ What prevents an easy jailbreak is the signature checks. While the kernel is 
loading there are thousands of checks being done to make sure everything 
being loaded is Apple approved.

▻ To be more specific, there are many checks through out the boot which look 
for one thing, a signature, a key. If the key is correct we get a green light, if it is 
wrong, depending where the check was at or what file it was, it will either 
crash the iDevice causing a loop, or simply ignore it and does not execute that 
specific file at all.



Hacking iOS

87

▰ Jailbreaking objective is to either patch the checks or bypass them. This brings us 
to two broad categories of exploits:

▻ bootrom exploit: Exploit done during the bootrom. It must be patched by new 
hardware. Since it's before almost any checkpoint, the malicious code is 
injected before everything, thus allowing a passageway to be created to 
bypass all checks or simply disable them.

▻ userland exploit: Exploit done during or after the kernel has loaded and can 
easily be patched by Apple with a software update. Since it's after all the 
checks, it injects the malicious code directly into the openings back into the 
kernel. These openings are not so easy to find, and once found can be 
patched.



Hacking iOS

88

▰ How did some of the released jailbreak actually worked?

▻ Limera1n (exploit, not tool): Bootrom exploit first used by Geohot. Due to it 
being a bootrom it can't be patched by Apple with a software update, which 
means it is still usable today in all A4 devices. Yes... including iOS 6.

▻ JailbreakMe: Userland exploit that used a malformed CFF vulnerability. CFF 
stands for Compact Font Format and it's used to store fonts. Starting with 
PDF version 1.2 it could be embedded directly into the .pdf file, but it had it's 
malfunctions. 



2. Jailbreaking vs. 
Android Rooting

Module 18



Hacking iOS

90

▰ They differ in scope. Some Android devices allow users to modify or replace the 
operating system after unlocking the bootloader. Moreover, nearly all Android 
phones have an option to allow the user to install unknown, 3rd-party apps, so no
exploit is needed for normal sideloading.

▰ iOS is engineered with security measures including a "locked bootloader" to prevent
users from modifying the operating system, and to prevent apps from gaining root 
privileges. It violates Apple's end-user license agreement for iOS. Apps installed this 
way have the restrictions of all other apps. In addition, alternative app stores 
utilising enterprise certificates have sprung up, offering modified or pirated 
releases of popular iOS applications and video games, some of which were either 
previously released through Cydia or are unavailable on the App Store due to them 
not complying with Apple developer guidelines. 



3. Types of 
Jailbreaking

Module 18



Hacking iOS

92

▰ When a device is booting, it starts with loading the Apple kernel initially. The device 
must then be exploited and have the kernel patched each time it is turned on.

▰ An "untethered" jailbreak is a process where a jailbreak is achieved without the 
need to use a computer. As the user turns the device off and back on, the device 
starts up completely, and the kernel is patched.

▰ With a "tethered" jailbreak, a computer is needed to turn the device on each time it 
is rebooted. If the device starts back up on its own, it will not have a patched kernel. 
The purpose of the computer is to "re-jailbreak" the phone each time it is turned on.

▰ There is also a third kind called a "semi-tethered" solution. What this essentially 
means is that when the device boots, it will no longer have a patched kernel, but it 
can be used for normal functions.



Mobile Security 
Guidelines and tools

Module 18



1. Securing Android 
devices

Module 18



Mobile Security Guidelines and tools

95

▰ Delete invasive Android apps that abuse your privacy.

▰ Setup a VPN on your Android device to encrypt internet traffic.

▰ Block ads on your Android.

▰ Secure your SMS messages through encryption.

▰ Adjust your Android settings for more privacy and security.

▰ Turn on Google’s malware scanner called Play Protect for Play Store apps.

▰ Turn on 2-step verification



Mobile Security Guidelines and tools

96

▰ Download a password manager

▰ Turn off connections when you don't need them. (BlueBorne)

▰ Use Lockdown mode

▰ Stop disclosing your location. 

▰ Install Find My Device

▰ Prevent unknown downloads

▰ Check app permissions

▰ Always have full backups



2. Securing iOS 
Devices

Module 18



Mobile Security Guidelines and tools

98

▰ Create an iPhone Passcode (strong one) 

▰ Use Touch ID or Face ID on iPhone 

▰ Enable 'Find My iPhone' 

▰ Control Your iPhone Privacy Settings 

▰ Don't Jailbreak Your iPhone 

▰ Make Encrypted iPhone Backups 

▰ Use Security Apps on Your iPhone (VPN, Password Manager, etc.)

▰ Turn on two-step verification for Apple ID and iCloud

▰ Disable Siri on a lock screen

▰ Turn off automatic sync to iCloud



Mobile Security Guidelines and tools

99

▰ Discard automatic WiFi connections to known networks

▰ Turn off cookies in your browsers

▰ Turn off the AutoFill option in your browsers

▰ Don’t let apps access your contacts, photos, messages and other private data

▰ Make sure automatic iOS updates are turned on

▰ Change your reused passwords

▰ Turn on USB Restricted Mode to make hacking more difficult

▰ Don't share location data in images 



3. Mobile Security 
Tools

Module 18



Mobile Security Guidelines and tools

101

▰ ImmuniWeb®MobileSuite

▰ Appvigil

▰ Ostorlab

▰ Zed Attack Proxy

▰ Kiuwan

▰ QARK

▰ Micro Focus

▰ Android Debug Bridge



Mobile Security Guidelines and tools

102

▰ AndroTotal

▰ CodifiedSecurity

▰ Drozer

▰ WhiteHat Security

▰ Synopsys

▰ Veracode

▰ SandDroid

▰ Mobile Security Framework (MobSF)



HACKING
Is an art, practised through a creative mind.

103


